
1

2

Recently, a cybercriminal group referred to as Sidewinder APT; a highly skilled and
persistent threat actor group was discovered initiating a targeted campaign against
Nepalese Government agencies. Their strategy involved the deployment of decoy
malicious documents disguised as communications from the Prime Minister Personal
Secretariat Office, which contained contents that resembled the itinerary of the
Nepalese Prime Minister.

This deceptive approach revealed an advanced and potentially harmful threat that
deployed a range of tactics, including email spear-phishing, document exploitation,
and DLL side-loading, leveraging server-side polymorphism to enhance evasion of
traditional antivirus detection. This urges swift attention and action from stakeholders
to protect Nepal’s governmental infrastructure.

The APT group, suspected to originate from India, has been targeting sectors like
Government, Military, Education, Healthcare, ISP and Telecommunication throughout
Asia, focusing primarily on Pakistan, China, Nepal and Afghanistan, since 2012. Besides,
the APT group is fairly popular by the names like Rattlesnake, Hardcore Nationalist,
HN2, APT Q4, RAZOR Tiger, APT Q39, BabyElephant and GroupA21.

FOREWORD

3

TACTICS, TECHNIQUES, AND PROCEDURE

Figure 1: Infection Chain

4

OVERVIEW

Vairav Tech received a suspicious malicious document sample circulated via email,
which targeted Nepalese Government agencies such as, Office of the Prime Minister,
Council of Ministers, Ministry of Foreign Affairs, Public Procurement Monitoring Office,
Federal Parliament and National Information Technology Center.

Figure 2: Stolen Document from PM Secretariat Office

5

Circulated as a decoy, the document was suspected to have been initially stolen from
the staff of the Prime Minister's Personal Secretariat office, presumably through a
compromised email address.

A malicious document that was embedded with a macro and the extension .docm,
circulated between September 15 - November 18, 2023.

THE PROCEDURE

After the victims receive the phishing email and unintentionally open it, they are lured
to enable the macros once the document is opened. The enabled macros embedded
with VB script and BAT script, are triggered to download the droppers conhost.zip or
sihosts.zip. This ultimately installs conhost.exe or sihost.exe, which exhibit similar code
characteristics to the Nim backdoor, with a primary objective of connecting back to the
adversaries' command and control center.

The Nim backdoor: A variant of the C++ backdoor developed by the APT group Baby
Elephant, it is considered an alias group of Sidewinder. The Baby Elephant APT group
has previously targeted the Nepal Army too.

Based on the malware characteristics and network infrastructure, Vairav believes that
these attacks could be classified as Baby Elephants. The attack activities are closely
related to Sidewinder, as both the groups are closely tied.

File Hash (MD5) File Type File Size

e2a3edc708016316477228de885f0c39 Macro document 857.74 KB

5533daa9a34eab3ff725a4e7a873a519 Document 712.50 KB

Table : The hash value of the .docm file

6

In-Depth Analysis

Initial stage

After the recipient opens the malicious document received via email, the embedded
macro virus is activated. This malicious script proceeds to inspect the mouse settings on
the Windows system, specifically targeting a registry key in the Windows Registry, namely
“HKEY_CURRENT_USER\Control Panel\Mouse.” Within this registry key, the threat actor
focuses on a particular entry named “DoubleClickSpeed”, conducting a read operation
to extract the information. The registry entry type identified as “REG_SZ”, indicates a
string value, with the read data is specified as “500,” likely representing the double-click
speed configuration. This suggests a potentially nefarious intent to gather insights into
the user’s mouse behavior.

Figure 3: Correlation Graph of the MalDoc

7

The “Startup” folder contains executable files or scripts that launches automatically
upon user login. Placing the scripts in the startup folder suggests an attempt to execute
specific commands or actions during system startup. This tactic is commonly exploited
by malware or potentially unwanted programs to achieve persistence on the infected
machine, ensuring their execution each time the user logs in.

Also, it drops “skriven.vbs” and “8lGghf8kIPIuu3cM.bat” on “C:\Users\windows\
AppData\Local\” directory.

Subsequently, the script collects varied event registries related to transactions between
Oracle and Windows databases, with a particular emphasis on the registry key “HKEY_
LOCAL_MACHINE\SOFTWARE\Microsoft\MSDTC\MTxOCI”. Within this key, a specific entry
named “OracleOciLib” undergoes a thorough examination through a read operation,
focusing on the extraction of information.

The type value associated within this registry entry is denoted as “REG_SZ”, indicating a
string value, wherein the extracted data is identified as “oci.dll.” This hints at a deliberate
investigation of the OracleOciLib registry entry, aiming to gather details about the oci.
dll file, potentially exploring the Oracle Database connectivity configuration on the
Windows system.

After these registry manipulations, the script drops multiple VBScript and BAT files on
the AppData directory of the user. The first VBScript name “OCu3HBg7gyI9aUaB.vbs” is
dropped into the startup directory of the computer, located at “C:\Users\admin\AppData\
Roaming\Microsoft\Windows\Start Menu\Programs\Startup\OCu3HBg7gyI9aUaB.vbs.”

Figure 4: OCu3HBg7gyI9aUaB.vbs on Startup directory

8

Furthermore, the script proceeds to write multiple binary data to a Stream object,
constituting a sequence of operations involving the retrieval of an identifier, the writing
of binary data to the Stream object through a specific function, and the return of a
hexadecimal value. Lastly, the script creates multiple FileSystem objects to gain access
to the computer’s file system, potentially enabling further malicious activities.

Second Stage

Following the restart of the compromised computer, the script named
“OCu3HBg7gyI9aUaB.vbs” is initiated from the startup menu.

Figure 5: VBScript and BAT files on AppData directory

9

This VBScript serves as a simple automation script with a conditional workflow based on
internet connectivity. Initially, the script pauses for 5 minutes using the WScript.Sleep
300000 command.

Subsequently, it checks for the internet connectivity by attempting to ping www.google.
com through the Ping () function. If the ping is successful (returning True), it sets an
unused variable obj to Nothing, pauses for another 5 minutes, then executes a batch
file located at “C:\Users\windows\AppData\Local\8lGghf8kIPIuu3cM.bat” using the
Wscript.Shell.Run method.

In case of a failed ping (returning False), the script skips setting obj to Nothing pauses
for 5 minutes, and executes the same batch file. The redundant execution of the batch
file in both the success and failure branches might indicate an oversight in the script,
and the variable obj does not contribute to the script’s functionality. Thus, the overall
purpose of the script appears to involve periodic execution of a batch file contingent on
the availability of internet connectivity, with intervals of 5 minutes between actions.

Figure 6: Screenshot of the VBScript dropped on the startup folder

10

The above code appears to be a series of commands written in a batch script and VBScript
that collectively perform a sequence of actions on an infected system.

The step-by-step breakdown of the code is listed as beneath:

I. unzFile.vbs: This creates a VBScript file named “unzFile.vbs” in the “C:\Users\
windows\AppData\Local” directory, and writes the VBScript code to this file, which
essentially copies the contents of a ZIP file (“conhost.zip”) to the same directory using
Windows Shell objects.

Figure 7: Code of 8lGghf8kIPIuu3cM.bat file

8lGghf8kIPIuu3cM.bat file

Figure 8: Code of unzFile.vbs

11

Breakdown of VBScript Code:

a. Set objFSO = CreateObject(“Scripting.FileSystemObject”):

This line creates a FileSystemObject, which is an object in VBScript that provides access
to the file system. Also, it allows the script to interact with files and folders.

b. Set objFile = objFSO.CreateTextFile("C:\Users\windows\AppData\Local\unz.
vbs", True):

This line uses the previously created FileSystemObject (objFSO) to create a new text file
named “unz.vbs” in the specified directory (“C:\Users\windows\AppData\Local”). The
True parameter indicates that if the file already exists, it should be overwritten.

c. objFile.WriteLine “Set zcAps = GetObject(""new:13709620-C279-11CE-
A49E-444553540000"")":

This line writes a new line to the text file. The content of the line is a VBScript instruction
that initializes an object (zcAps) using the GetObject method with a specific namespace
identifier (“new:13709620-C279-11CE-A49E-444553540000”). This identifier likely
represents a Shell object in the Windows Scripting Host environment.

d. objFile.WriteLine “zcAps.Namespace(""C:\Users\windows\AppData\
Local"").CopyHere zcAps.Namespace(""C:\Users\windows\AppData\Local\
Microsoft\conhost.zip"").items”:

This line writes another VBScript instruction to the text file. Utilizing the zcAps object,
it copies the contents of a ZIP file (“conhost.zip”) located in the “C:\Users\windows\
AppData\Local\Microsoft” directory to the “C:\Users\windows\AppData\Local” directory.

e. objFile.Close:

This line closes the text file, saving any changes made to it.

f. Set objFile = Nothing:

This line releases the reference to the objFile object, freeing up the system resources.
The object variables are set to Nothing when they are no longer needed.

The creation of this script file suggests an automated process for extracting files from a
specific ZIP archive (“conhost.zip”), concluding the code by closing the file and releasing
associated resources.

12

II. 2L7uuZQboJBhTERK.bat: This creates a batch script named “2L7uuZQboJBhTERK.
bat” in the “C:\Users\windows\AppData\Local” directory and writes the commands to
this batch script, instructing it to execute the “unzFile.vbs” script and another script
named “skriven.vbs” with certain parameters.

The command sequence begins by suppressing the display of commands in the console
with @echo off. Subsequently, the script employs wscript.exe to execute a VBScript
file named “unzFile.vbs” located in the “C:\Users\windows\AppData\Local” directory.
This VBScript contains instructions related to file manipulation followed by another
VBScript, “skriven.vbs”, which is then executed, providing the path to a batch script,
“2BYretPBD4iSQKYS.bat”, as a parameter.

The specific actions performed by these scripts depend on their contents, which are not
provided here. The use of VBScript and batch files in this context suggests a scripted
automation process, potentially involving tasks related to file operations or system
configuration.

This command is a line of VBScript code that utilizes the GetObject method to retrieve
a reference to a Windows Script Host (WSH) shell object. The specific identifier "new:
{72C24DD5-D70A-438B-8A42-98424B88AFB8}" represents the ProgID (Programmatic
Identifier) for the WScript.Shell object. Once the WScript.Shell object is obtained, the
Run method is invoked on it.

Figure 9: Code of 2L7uuZQboJBhTERK.bat

Figure 10: Code of skriven.vbs

13

The provided script lines involve the use of VBScript to manipulate files and directories.
The first line initializes an object, zcAps, using the GetObject method with a specific
namespace identifier (“new:13709620-C279-11CE-A49E-444553540000”).

Listed beneath is a breakdown of the parameters that are passed to the Run method:

• chr(34) & WScript.Arguments(0) & chr(34): This part of the code constructs a
string that encapsulates the first command-line argument passed to the script. The
chr(34) represents a double quotation mark, and WScript.Arguments(0) retrieves the
first command-line argument. The constructed string is enclosed in double quotation
marks.

• 0: This parameter specifies the window style for the executed command. In this
case, 0 indicates that the window should be hidden.

• False: The third parameter indicates whether the script should wait for the
command to complete (True) or continue executing without waiting (False). In this case,
it is set to False, meaning the script will not wait for the command to finish before moving
on to the next line.

This command runs a command specified as the first command-line argument to the
script using the WScript.Shell object. The executed command is encapsulated in double
quotation marks and is run with a hidden window, and the script does not wait for
the command to complete before continuing its execution. This type of construction
is common in scripts where external commands or programs need to be invoked and
executed as part of a broader script.

III. 2BYretPBD4iSQKYS.bat: This creates another batch script named
“2BYretPBD4iSQKYS.bat” in the same directory. Like the previous batch script, it instructs
the execution of the “unz.vbs” script and "skriven.vbs" with different parameters.

Figure 11: Code of unzFile.vbs

14

This identifier likely represents a Shell object in the Windows Scripting Host environment.
The second line utilizes this object to perform file operations. It instructs the script to
copy the contents of the “conhost.zip” file located in “C:\Users\windows\AppData\Local\
Microsoft” to the “C:\Users\windows\AppData\Local” directory. This operation is carried
out using the CopyHere method on the namespace associated with the destination
directory.

IV. d.bat: This creates a batch script named “d.bat” with commands to create a
scheduled task using schtasks. The task runs a program (“conhost.exe”) every minute.

It performs several tasks related to scheduling and executing processes on the system:

a. @echo off: This command turns off the echoing of commands in the console,
making the output cleaner by only displaying the results of commands rather than the
commands themselves.

b. schtasks /create /SC minute /MO 1 /TN ConsoleHostManager /TR “C:\Users\
windows\AppData\Local\conhost.exe” /F: This line uses the schtasks command to
create a new scheduled task.

The parameters are as follows:

• /create: This specifies the creation of a new scheduled task.

• /SC minute: This sets the scheduling frequency to every minute.

• /MO 1: This specifies that the task should run every 1 minute.

• /TN ConsoleHostManager: This assigns the name “ConsoleHostManager” to the
scheduled task.

• /TR “C:\Users\windows\AppData\Local\conhost.exe”: This defines the task to
execute the program “conhost.exe” located in the specified directory.

• /F: This forces the creation of the task, overwriting any existing task with the same
name.

Figure 12: Code of d.bat file

15

c. “C:\Users\windows\AppData\Local\skriven.vbs”"C:\Users\windows\
AppData\Local\e.bat": This line executes a VBScript file named “skriven.vbs” located
in the “C:\Users\windows\AppData\Local” directory. Additionally, it provides the path
to a batch script, “e.bat”, as a parameter to the VBScript. The purpose of this could be
to perform specific actions within the VBScript that involve or depend on the provided
batch script.

Furthermore, it creates a scheduled task that runs the “conhost.exe” program every
minute. Following this, it executes a VBScript file (“skriven.vbs”) and passes a batch
script (“e.bat”) as a parameter to the VBScript.

V. e.bat: This creates a batch script named “e.bat” with commands to delete the
previously created files: “unzFile.vbs”, “2L7uuZQboJBhTERK.bat”, “2BYretPBD4iSQKYS.
bat”, “d.bat”, and “e.bat” itself.

It is designed to echo deletion commands for specific files - namely, “unzFile.vbs”,
“2L7uuZQboJBhTERK.bat”, “2BYretPBD4iSQKYS.bat”, “d.bat”, and the script itself, “e.bat”.
The inclusion of the echo command indicates that the script displays these commands
in the console without executing them immediately. The actual deletion of the specified
files would occur when the script is run, subsequently initiating a self-destructive
mechanism, as it cleans up its own components after completing its intended tasks.

VI. Execution:

Finally, the script initiates the execution of “skriven.vbs”with parameters, leading to the
execution of “2L7uuZQboJBhTERK.bat”.

VII. Cronhost.exe:

The file possesses the MD5 hash “777fcc34fef4a16b2276e420c5fb3a73”. Upon verifying
this hash value on VirusTotal, it was confirmed that the file was linked to a reverse shell.

Figure 13: Code of e.bat

16

Figure 14: VirusTotal result of Cronhost.exe

Figure 15: Screenshot of all the VBScript and BAT files

The use of a reverse shell is a common tactic employed by malicious actors to gain
unauthorized access and control over a compromised system. A reverse shell allows
an attacker to establish a connection from the victim’s machine to an external server
controlled by the attacker.

This provides a backdoor entry point into the system, enabling the malicious actor
to execute commands, transfer files, and potentially conduct further attacks without
direct interaction with the compromised machine. The reverse shell essentially flips the
traditional client-server communication model, allowing the attacker to remotely control
the victim's system, making it a potent tool for unauthorized access and exploitation.

17

title: Activity_Sequence_by_Sidewinder

id: sidewinder_activity_sequence

description: Detects a sequence of malicious activities of sidewinder, including VBScript execution, BAT file execution, ZIP
content copying, and executable launch.

author: Rodan Maharjan

date: 2023-11-29

logsource:

 product: windows

 service: sysmondetection:

 selection:

 - EventID: 1

 Image: 'C:\Users\admin\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup*.vbs'

 - EventID: 1

 Image: 'C:\Users\windows\AppData\Local*.bat'

 - EventID: 7

 TargetFilename: 'C:\Users\windows\AppData\Local*'

 DestinationFilename: 'C:\Users\windows\AppData\Local*'

 CommandLine: '*\Microsoft\conhost.zip*'

 - EventID: 1

 Image: 'C:\Users\windows\AppData\Local*.exe'

 - EventID: 1

 CommandLine: '**.exe'

 condition: all of them

tags:

 - malicious

 - ransomware

 - sysmon

falsepositives:

 - Legitimate use of scripts and executables

level: high

DETECTION

18

MITRE ATT&CK TECHNIQUES

The malware makes the usage of various attack tactics, techniques, and procedures
based on the MITRE ATT&CK framework to attack victimized users or organizations:

Tactics TTechnique

Initial Access
Phishing (T1566)

• Spear phishing Attachment (T1566.001)

Execution
User Execution (T1204)

• Malicious File (T1204.002)

Persistence
Boot or Logon Auto start Execution (T1547)

• Registry Run Keys/ Startup Folder (T1547.001)

Privilege Escalation
Boot or Logon Auto start Execution (T1547)

• Registry Run Keys/ Startup Folder (T1547.001)
Defense Evasion Deobfuscate/Decode Files or Information (T1140)

Discovery
Modify Registry (T1112)
System Information Discovery (T1082)

Collection Browser Session Hijacking (T1185)

Command and Control

Application Layer Protocol (T1071)

• Web Protocols (T1071.001)

Ingress Tool Transfer (T1105)

19

INDICATORS OF COMPROMISE (IOCs)

File name Md5
8lGghf8kIPIuu3cM.bat 67aaebc796ce1be6e7801554a6cdf162

skriven.vbs 32c5141b0704609b9404eff6c18b47bf
OCu3HBg7gyI9aUaB.vbs 64c3b1d1f7c74b6acf18dced5e7ff06e

unz.vbs da507b77d05007a0e861e9e7b04293d0
conhost.zip 3b629910a9432f456b59f4e779907aa6
conhost.exe 777fcc34fef4a16b2276e420c5fb3a73

2BYretPBD4iSQKYS.bat 7a2076224b2a86136e20e712a3e6bf02
2L7uuZQboJBhTERK.bat 8437010fb29eb6d7b60968011edd555e

d.bat de25ec726b984265bcac103dab6bb68d
e.bat e4329365126391838ee8fbb6432acfdf

unzFile.vbs ceb6e8a8ea24a6944be7a9e8ba2c0f0a
8lGghf8kIPIuu3cM.bat 67aaebc796ce1be6e7801554a6cdf16

20

IP Address Domains
hxxp://mail.mofa.govnp.org/mail/AFA/

hxxp://nitc.govnp.org/mail/AFA/

hxxp://dns.govnp.org/mail/AFA/

hxxp://mx1.nepal.govnp.org/mail/AFA/

hxxp://nitc.gavnp.org

hxxp://nepal.gavnp.org

hxxp://mx2.nepal.gavnp.org

hxxp://mx1.nepal.gavnp.org

hxxp://dns.nepal.gavnp.org

hxxp://cloud.nitc.gavnp.org

hxxp://mofa.gavnp.org

hxxp://parliament.gavnp.org

hxxp://mail-ppmo.gavnp.org

hxxp://mail.mofa.govnp.org/mail/AFA/

hxxp://nitc.govnp.org/mail/AFA/

hxxp://dns.govnp.org/mail/AFA/

hxxp://mx1.nepal.govnp.org/mail/AFA/

hxxp://nitc.gavnp.org

213[.]109[.]192[.]93

84[.]32[.]84[.]32

213[.]109[.]192[.]93

44[.]227[.]65[.]245

44[.]227[.]76[.]166

192[.]229[.]211[.]108

20[.]99[.]184[.]37

20[.]99[.]186[.]246

213[.]109[.]192[.]93

23[.]216[.]147[.]64

21

THREAT SUMMARY

Name Sidewinder, T-APT-04, Rattlesnake

Threat Type Trojan, Downloader, Dropper, Macro Virus

Detection Name

Fortinet: VBA/Valyria.6953!tr,

AVG: VBS:Obfuscated-gen [Trj],

BitDefender: VB:Trojan.Valyria.6953,

KasperskyUDS:DangerousObject.Multi.Generic.

Symptoms

Decoy Documents, Dynamic URL Requests, Unusual
Network Activity, Scripted Attacks, Nim Backdoor Activation,
Persistence Mechanisms, Unrecognized Processes, Data
modifications

Additional Information

The Nim backdoor’s functionality is part of a potentially
long-term and strategic operation. The consistency in the
characteristics of the macro code and the Nim backdoor
suggests a tried-and-tested approach by the attacker.

Distribution methods
Spear-phishing techniques,

Document Exploitation

Damage Steal sensitive information, data loss, downtime, and
financial loss

Malware Removal (Windows)

Effective removal typically requires using robust antivirus or
antimalware software capable of detecting and eradicating
the malware components. Additionally, restoring the
system to a known good state through system backups
and performing a thorough analysis of network activity is
recommended to ensure complete removal and mitigation
of potential residual threats.

22

VAIRAV BEST PRACTICES

Vairav recommends the following practices to mitigate and prevent the ransomware
attacks:

1. Cautionary measures against Phishing Attacks

• Exercise caution while encountering emails that contain unexpected attachments
or links, especially from unknown or unverified sources.

• Refrain from clicking on links shared through social media channels if the source
is unfamiliar.

2. Avoidance of Execution of Unknown Files

• Do not execute email attachments or run files with exaggerated titles, particularly
those received from untrusted or unfamiliar sources.

• Exercise discretion when dealing with files related to governmental activities or
high-profile events, as they may be used as decoys in cyber-attacks.

3. Backup of Important Files

Regularly back up critical files to a secure and isolated location to mitigate the impact
of potential data loss in the event of a cyber-attack.

4. Patching and Update of Systems

Apply the security patches and updates to operating systems and software promptly, to
address known vulnerabilities and enhance overall system security.

5. Utilization of Threat Intelligence Platforms

Leverage the Threat Intelligence File In-depth Analysis Platforms to identify and analyze
files from unknown sources, particularly those in multiple formats compatible with
Windows and Android platforms.

6. Cautionary measures against Unknown Applications

• Exercise caution while installing applications from informal or untrusted sources.

• Verify the authenticity of applications through the Threat Intelligence Analysis
Platform before running or installing them.

23

CONCLUSION

It is important to remember that cyber adversaries are likely to constantly evolve their
methods, tools, and techniques to evade detection and continue to be successful in
their attacks. Therefore, organizations and individuals must stay informed about the
latest TTPs and take proactive steps to protect themselves.

���������������������������
������
����	����

������������
��

���������������������������

������ �������
��

���������������������

���������

